
IPsec
real end-to-end security without VPNs

FUKT Computer Society
Teddy Hogeborn
Björn Påhlsson

Who are we?

● FUKT Computer Society
– Unix system since 1995
– Using IPsec since 2003

● FUKT is a society/club for computer
enthusiasts
– A computer system with many servers
– Holds lectures ☺
– Meet, experiment and tinker
– A lot of (almost 100) members
– Had some nice rooms until recently

A more basic and conceptually cleaner
way to encrypt and authenticate
Internet communications.

What is IPsec?

DataTCP

UDP

ICMP

etc.

ESPIP

DataTCPIP DataTCPIP

Encrypted

● IPsec is simpler on a conceptual level,
like speaking Navajo* instead of using
Enigma.

● It’s still hard to learn Navajo

* http://www.navajocodetalkers.org/

http://www.navajocodetalkers.org/

Is IPsec some special Linux thing?

No.

● First standard in 1995
● Third standard in 2005

● Supported for a long time
– Unix
– Mac OS X
– Windows NT and later (2000, XP, etc.)
– Most other operating systems

Why is IPsec not more
widely used?

● Complex to configure
– People prefer simpler methods

● Old key management standard “IKE”
very complex
– Phase 1/Phase 2/Main mode/Quick mode/

Aggressive mode/
– 4 different methods, 8 ways to do it
– New “IKEv2” standard is better

● Not widely supported yet

What will be covered in
this lecture?

● Why use IPsec?

● How IPsec works, in theory...

● ...and practice
– (in Debian with Racoon and an early

release of OpenIKEv2)

Why use IPsec?

● Why encryption/authentication?
● Single point of failure?
● What's wrong with using VPNs?
● Why not use an SSH tunnel?
● Why not use TLS?
● Monitoring and external firewalls?
● How is IPsec better?

– Pros and cons of IPsec

Why encryption/
authentication?

● Encryption is important
– Privacy from traffic sniffers

● Authentication is important
– Protection from spoofing and man-in-the-

middle attacks
● Examples:

– Protect NFS, NIS, SMB...
– Targeted security (lazy sysadmins)

● Forced encryption for all applications
● Also on the local network!

Single point of failure?

● IPsec is only meant for
– Encryption
– Authentication of hosts
– Replay protection
– Traffic flow confidentiality

● Not meant for authorization or user
authentication
– Left to individual services and programs

● Extra security can easily be added
– Beyond the scope of this talk

What’s wrong with VPNs?

● Why a tunnel?
– Two identical IP headers

● Does not protect individual hosts
● Creates stereotypical network design

– Makes you fall into a design pattern which
may not be appropriate

● End-to-end principle* states:
– Intelligence at the end points
– As little intelligence as possible in between
– No host should rely on something else to

protect it from “bad” traffic.

*http://www.reed.com/Papers/endtoend.pdf

http://www.reed.com/Papers/endtoend.pdf

Why not use SSH tunnels?

● SSH is a remote login system
– SSH tunnels not a general tunneling

mechanism
● Tunnels always alongside a login

– Needs a remote user
● Authenticates users, not machines
● Only passwords and its own unique

public key system

Why not use TLS?
(Used to be called SSL, as used in HTTPS)

● Only for TCP traffic
● Can only use X.509 certificates
● Support must exist in all applications

– A lot of work to configure all of them
● Both client and server programs need

access to their respective private keys
– If a single host key is used, all server

programs need access to it.

Brute force works, but…

● You can tunnel anything over anything
● TLS over TCP over IP over PPP over

Telnet over TCP over IP…

● Rainbows are pretty, but not elegant
● …nor efficient

TLS DataTCPIPPPPTelnetTCPIP

What about monitoring
and firewalls?

● The goal of encryption is to defeat
packet sniffing
– Any encrypted traffic will bypass any

external firewalls and can not be
monitored

● IPsec potentially encrypts everything
– The end hosts must secure themselves

● Some statistical analysis can still be
done
– IPsec has features to make even this

difficult, since the person who makes the
analysis might not be you

How is IPsec better?

● Can encrypt everything (TCP, UDP,
ICMP, SCTP, etc.)

● Does not require application support
– I now run Telnet every day

● Offloads key management to a
separate application
– Can most often use at least either pre-

shared keys or X.509 certificates
– Can be upgraded and replaced over time

● Does not need to be handled and
managed – it’s just there, invisible

Downsides

● Need to be configured on both sides.
● Must be configured on the Operating

System level
– can not be changed or accessed by users

● Is CPU-bound – can be slow
– Not compared to other encryption methods

● Algorithms can be selected and tuned
– We encrypt everything…

● Adds some size overhead to packets
– Not much compared to other methods
Security Architecture for Control Networks using IPsec and KINK, Nobuo Okabe et al.

http://www.taca.jp/docs/saint2005/12_nobuo_okabe.pdf
Vincent Roy, Benchmarks for Native IPsec in the 2.6 Kernel, Linux Journal, October 2004

http://www.linuxjournal.com/article/7840

http://www.taca.jp/docs/saint2005/12_nobuo_okabe.pdf
http://www.linuxjournal.com/article/7840

Can IPsec be of use in
WLANs?
Yes, certainly.

● To IPsec, a WLAN is nothing special and is
treated like any other network medium.

● WLANs, on the other hand, might need IPsec
more than wire-based networks do, since
WLANs are inherently less secure.

● If IPsec is used for everything, you could turn
off WPA etc, since IPsec is better anyway.

● Won't give authority control
– A Network Access Server with EAP-IKEv2 support

can fix this

What about IPv6?

Yes, IPsec can do IPv6.

● IPsec is designed to be used with both
IPv4 and IPv6.

● The IPv6 standards mandates IPsec
support.

Why bother with IPsec if it
is so complex?

● It is getting better all the time.
● Since you only need to configure it

once per host to secure all IP traffic, it
is worth the effort.

● You don't really need to understand all
of it to get it to work.
– We are proof of this. ☺

How does IPsec work?

● Much like a stateful firewall
● Security Policy Database (SPD)

– Like a firewall rule list
● Security Association Database (SAD)

– Like a stateful firewall’s list of current
connection states

● Security Policy Database
(SPD)

● Much like a firewall rule list
● Lists what packets should be encrypted

or not
● Can specify by addresses, protocols

and/or port numbers

Security Association
Database (SAD)

● Much like a stateful firewall’s list of
current connection states

● Each Security Association (SA) has:
– Encryption and hash algorithm
– Session keys
– Maximum lifetime and byte counts

● An SA must exist for packets to be
encrypted. The SPD rules does nothing
but indicate the need for an SA.

Sequence of events
(first outgoing packet)

● An outgoing packet is created locally
● The SPD is searched for a match
● An SA is created to match the

parameters specified in the SPD
– Any existing matching SA is reused

● Packet is encrypted, signed, padded,
etc. according to the SA settings

● Packet is sent

Sequence of events
(first outgoing packet)

Packet

SPD

SAD

Encrypted
Packet

SPD Entry Found

● SA not created by the Kernel
– only holds SPD and already created SAs

● A Key management daemon is signaled
– Daemon uses IKE or IKEv2 protocol for key

negotiation
● UDP port 500

● Common Daemons are Racoon,
ISAKMPd, Pluto, …

A working connection

● Two SPD and SA entries on each host
– one for outgoing, one for incoming

● Similarly configured key management
daemons
– Need to agree to use same algorithms,

authentication method, etc.
● Negotiation phase need to be setup

– can be same as for the SA

● Need access to authentication data
– PSK, Private certificate

Practical examples

● Have:
– Two Debian computers
– One certificate for the Certificate

Authority, and one signed certificate for
each host

– Working network between
● On same local network or using the global

Internet to a different continent does not
matter – any connection works

● Want:
– End to end IPsec

● Transport mode, not Tunnel mode (VPN)

X.509 Certificates?
(very briefly)

CA cert

Cert 1 Cert 2

SignsSigns

Host 1

Cert 1

CA cert

copy

copy

Host 2

Cert 2

CA cert

copy

copy

Internet communication

key0

key1 key2

key1 key2

X.509 Certificate programs

● These are graphical programs to
manage X.509 certificates:

– TinyCA
● http://tinyca.sm-zone.net/

– XCA
● http://www.hohnstaedt.de/xca.html

http://tinyca.sm-zone.net/
http://www.hohnstaedt.de/xca.html

X.509 is a nightmare itself

● If you don’t believe us:

– Everything you Never Wanted to Know
about PKI but were Forced to Find Out

● http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf

– Generating X.509 Certificates
● From “The official IPsec Howto for Linux”

– http://www.ipsec-howto.org/x595.html

– The Open–source PKI Book
● http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm

*(PKI = Public Key Infrastructure)

http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://www.ipsec-howto.org/x595.html
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm

Recap

● IPsec encrypts and authenticates
● Rule list called SPD, Security Policy

Database
● An ongoing connection is an SA, a

Security Association
– Contains session key

● An SA is most often created by a key
negotiation daemon
– Typically uses IKE or IKEv2 to negotiate

● Kept in kernel

Odds and ends

● IPsec packets use the ESP protocol
– Will show up as “ESP” in a sniffer, not TCP

or UDP, etc.
● IPsec also has an “AH” protocol.

– Don’t use it; unnecessary complexity
● IPsec has a VPN feature called “Tunnel

mode”
– Don’t use tunnel mode if you don’t need it
– We are using “transport mode”

● Minor complications with startup

Transport & Tunnel mode

DataTCP, etc.ESPIP

DataTCPIP

DataTCP, etc.ESP IPIP

Transport

Tunnel

Normal (no IPsec)

New Original

Racoon –
an IKE daemon

● Install
– aptitude install racoon

● Configure
– SPD

● /etc/ipsec-tools.conf
– Racoon

● /etc/racoon/racoon.conf

● Testing to see if IPsec works
– setkey -PD (SPD)
– setkey -D (SAD)

/etc/ipsec-tools.conf

spdadd 193.11.177.97 193.11.177.88
any -P out ipsec
esp/transport//require;

spdadd 193.11.177.88 193.11.177.97
any -P in ipsec
esp/transport//require;

/etc/racoon/racoon.conf

remote 193.11.177.88 {
 exchange_mode main;
 certificate_type x509 "tharkun-cert.pem" "tharkun-key.pem";
 my_identifier asn1dn;
 verify_identifier on;
 peers_identifier asn1dn "C=SE, ST=Blekinge, L=Karlskrona, O=FUKT

Computer Society, CN=murvel.fukt.bsnet.se";
 proposal {
 encryption_algorithm 3des;
 hash_algorithm sha1;
 authentication_method rsasig;
 dh_group modp2048;
 }
}
sainfo address 193.11.177.97 any address 193.11.177.88 any {
 pfs_group modp2048;
 encryption_algorithm aes;
 authentication_algorithm hmac_sha1;
 compression_algorithm deflate;
}

Say what?

● IKE is complex

● IKE key management daemons are
written by people who could
understand the first standards

● Racoon is one of the easier ones!

IKEv2 to the rescue

● One method with 2 steps instead of 8
different possible methods in IKEv1.
– IKE_INIT, IKE_AUTH

● Some denial of service protection

OpenIKEv2 –
an IKEv2 daemon

● Working example of IKEv2 (still in
testing)

● Configuration file with clear examples
and sections for Peer, My ID, etc.

● No Debian package yet ☹
● Version 0.93
● http://openikev2.sourceforge.net/
● Compile and install manually

– Left as an exercise for the reader

http://openikev2.sourceforge.net/

/etc/openikev2/openikev2.conf
(policy section)

policies{
policy{

src_selector = 193.11.177.97/32
dst_selector = 193.11.177.88/32
ipsec_proto = esp

}
}
#OpenIKEv2 creates SPD entries

#This section replaces /etc/ipsec-tools.conf
#Any protocol, any port, transport mode
#Creates two SPD entries, one in each

direction

/etc/openikev2/openikev2.conf
(peer section)

peer{
peer_id{

id_type = ipaddr
id = 193.11.177.88

}
peer_id{

id_type = der_asn1_dn
id = "/etc/openikev2/certs/murvel-cert.pem"

}
…

/etc/openikev2/openikev2.conf
(peer/ike section)

…
ike{

my_id{
id_type = der_asn1_dn
id = "/etc/openikev2/certs/tharkun.crt"

}
proposal{

encr = {aes256, aes192, aes128, 3des}
integ = {hmac_sha1}
prf = {sha1}
dh = {2, 1}

}
reauth_time = 600
authentication_method = cert
my_certificates = { "/etc/openikev2/certs/tharkun" }

This will read the files “tharkun.key” and “tharkun.crt”
ca_certificates = { "/etc/openikev2/certs/fukt" }

This will read the file “fukt.crt”
}

…

/etc/openikev2/openikev2.conf
(peer/ipsec section)

ipsec{
esp_proposal{

encr = {aes256, aes192, aes128, 3des}
integ = {hmac_sha1}

}
lifetime_soft = 500
lifetime_hard = 800
max_bytes_soft = 1000000
max_bytes_hard = 1200000

}
}
#End of “peer” section
#End of file

END OF LINE

